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Visual working memory is highly sensitive to global configurations in addition to the features of each
object. When objects move, their configuration varies correspondingly. In this study, we explored the
geometric rules governing the maintenance of a dynamic configuration in visual working memory. Our
investigation is guided by Klein’s Erlangen program, a hierarchy of geometric stability that includes
affine, projective, and topological invariants. In a change-detection task, memory displays were catego-
rized by which geometric invariance was violated by the objects’ motions. The results showed that (a)
there was no decrement in memory performance until the projective invariance was violated, (b) more
dramatic changes (such as a topological change) did not further enlarge the decrement, and (c) objects
causing the violation of projective invariance were better encoded into memory. These results collec-
tively demonstrate that projective invariance is the only geometric property determining the maintenance
of a dynamic configuration in visual working memory.
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Humans process dynamic information from multiple objects
every day, ranging from chasing prey in ancient times to playing
football with teammates in modern times. To evaluate the rela-
tionships and dynamic spatial configurations (DSCs) among these
objects, the visual system has to store the history of the moving
objects for a short period. Presumably, these online storage and
evaluation processes are achieved via visual working memory
(VWM), which offers a limited capacity for storing and manipu-
lating visual stimuli (Baddeley, 1998; Luck & Vogel, 1997).
Compared with the large amount of work on the storage of static
features and objects (e.g., Alvarez & Cavanagh, 2004; Shen,
Huang, & Gao, 2015; Vogel, Woodman, & Luck, 2006), few
studies have explored the memory of motion information. These
studies primarily focused on the storage of individual motion

directions, such as how the precision of memorized motion direc-
tion declines as a function of the set size of the memory display
(e.g., Narasimhan, Tripathy, & Barrett, 2009; Shooner, Tripathy,
Bedell, & Öğmen, 2010; Zokaei, Gorgoraptis, Bahrami, Bays, &
Husain, 2011), how the speed of the motion impacts memory
performance (McKeefry, Burton, & Vakrou, 2007), and to what
extent the memorized motion direction can be retained over a long
period (Blake, Cepeda, & Hiris, 1997). While these previous
studies provided a comprehensive picture of how individual items
are stored, it is still far from clear how the global configuration of
these items is constructed and maintained in VWM.

Contrasting Static and Dynamic
Spatial Configurations

In the current study, we focused on the encoding and mainte-
nance of multiple moving objects’ DSCs instead of the storage of
each individual object. It has been shown that VWM stores the
relationships between individual items on the basis of global
spatial configurations (Gmeindl, Nelson, Wiggin, & Reuter-
Lorenz, 2011; Jiang, Chun, & Olson, 2004; Jiang, Olson, & Chun,
2000; Olson & Marshuetz, 2005; Woodman, Vecera, & Luck,
2003). The spatial configuration of a static scene is analogous to a
spatial reference frame (Olson & Marshuetz, 2005). The effects of
this spatial configuration were explored with a change-detection
task, in which an array of objects was presented first as the
memory display and shortly afterward was presented with the
same or a different spatial configuration. Even when the configu-
ration was completely irrelevant to the memory task (e.g., remem-
bering the color or shape; see Jiang et al., 2000), performance was
worse when the spatial configuration was distorted. This effect
existed even when people were explicitly instructed to ignore the
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spatial locations, which suggests that the storage of the global
spatial configuration is obligatory (Jiang et al., 2000, 2004).

It is rather unclear how to transfer the above conclusion from
static displays to dynamic ones. In the case of static displays,
the differences between the memory and test displays were
introduced by an abrupt change without any intermediate tran-
sition. However, in dynamic displays, such an “abrupt change”
does not exist, as the configuration changes smoothly along
with the trajectory of each individual object. In other words, it
is not clear what an “unchanged” configuration means in a
dynamic display. Directly applying the conclusion from static
scenes to dynamic displays will lead to a naive conclusion that
DSCs cannot be maintained in VWM at all, as the spatial
location of each object keeps changing.

To encode DSCs in memory, a more sophisticated representa-
tion of configuration is required. To the best of our knowledge,
only one study has explored the storage of DSCs in VWM (Pap-
enmeier, Huff, & Schwan, 2012). In that study, participants were
asked to memorize a scene containing several moving objects. In
the test display, an item’s motion was “rewound” and replayed.
The results showed that change-detection performance was the
best when the test item’s motion was played with the same context,
in which the other objects’ motions were copied exactly from the
memory display compared with in isolation or with a different
context. These results demonstrate that individual motion direc-
tions are indeed encoded as a part of a configuration. However, it
is unclear what types of visual features are critical in maintaining
a dynamic configuration. By “rewinding” the memory display and
“playing it back” again, the results of Papenmeier et al.’s (2012)
study can be directly compared with those obtained with static
features (e.g., Jiang et al., 2000). From this perspective, motion can
be treated as a feature that is similar to other static scene attributes,
such as color and shape. Nevertheless, motion is different from
static features, as it is not only spatially distributed on different
objects but also captures how the scene is going to develop over
time. A robust dynamic configuration should persistently exist
when the objects’ movements continue smoothly. Therefore, in
this study, we were more interested in exploring the representation
of dynamic configuration by playing the motion display forward
rather than rewinding it back to the original spatial location in the
test displays.

Another related line of research is multiple object tracking
(MOT), which focuses on the online perception of moving objects
(e.g., Blaxton, Fehd, & Seiffert, 2011; Franconeri, Jonathan, &
Scimeca, 2010; Pylyshyn, 2001; Pylyshyn & Storm, 1988; Zhao et
al., 2014). A key study on this topic, conducted by Yantis (1992),
demonstrated that the configuration of multiple moving objects
could be defined as the convex hull over the location of each
attentively tracked object. This polygon collapsed when a vertex of
the polygon crossed an opposite edge, which caused the relative
“ordering” of the points on the perimeter of the polygon to change.
While there has been significant progress in understanding the
mechanisms of MOT over the past 20 years, it is striking that the
geometric rules governing the dynamic configuration of multiple
objects were rarely explored further. One motivation of the current
work was to revive the geometric perspective pioneered by Yantis
(1992) in the context of VWM.

Geometric Transformations and Dynamic
Spatial Configuration

Here, we use geometry as a powerful tool for exploring the
nature of DSC. To represent dynamic spatial configuration, the
visual system has to balance dynamic and configuration, which
seem to capture opposite properties of a scene. Dynamic implies
that the objects’ spatial positions are constantly changing, while
configuration implies that certain global properties remain invari-
ant over time. The representation of DSC should be a compromise
of two opposite demands. On one hand, it needs to be insensitive
to small changes such that a DSC persists over time, which is
critical to stable and coherent visual experience. On the other hand,
it should not tolerate major and dramatic changes such that the
destruction of a DSC can reflect the disappearance of important
configuration information in the scene. However, the above intu-
ition of DSC alone is far from sufficient, as it is completely unclear
what “small changes” and “major and dramatic changes” mean. To
address this challenge, we proposed a formal theory based on
geometric transformation to explain the construction and decon-
struction of DSC.

Such a geometric perspective of DSC has several advantages.
First, configuration can be vaguely interpreted as information that
does not reside in individual objects. By using geometry, one can
avoid intuitively defined configuration and analyze the spatial
relationships among individual objects with quantitative precision.
Second, a theory of geometry can divide configurations into a
hierarchy with several levels of spatial relationships. Such a hier-
archy is important both theoretically and methodologically. From
a theoretical perspective, each level of the hierarchy can be a
candidate representation for DSC. From a methodological perspec-
tive, there are explicit algorithms defining the maintenance and
destruction of each level of the spatial configuration. These algo-
rithms can be directly employed for designing psychophysical
experiments.

More generally, geometry is important for visual perception due
to the deep connections between vision and graphics. Computer
graphics start from creating a 3D scene and then projecting it onto
a 2D image (i.e., the rendering process) by using geometric rules.
In contrast, vision starts from 2D images on the retinas and then
reconstructs 3D scenes given 2D images. In other words, vision
can be understood as a type of “inverse graphics.” This perspective
has a long tradition in psychology, since von Helmholtz (1867),
and has been supported by many empirical studies (e.g., Feldman
et al., 2013; Scholl, 2005). Recently, this perspective has also been
successfully implemented in computer vision for image parsing
and recognition (Kulkarni, Yildirim, Kohli, Freiwald, & Tenen-
baum, 2014). Employing geometric rules to understand DSC fits
well with this “inverse graphics” perspective of vision.

Throughout the history of human vision research, geometry has
mostly been used in studies of shape constancy and object recog-
nition. The studies of shape constancy concern the perception of
the physical shape regardless of the transformation of the retinal
image. This line of research explores how humans maintain a
constant shape representation during the change of viewpoint of
the observer or the movement of objects. Some researchers found
that the shape representation is based on geometric invariants at
different levels of structural stability. These geometric invariances
include Euclidean properties and affine properties such as copla-
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narity (e.g., Tittle, Todd, Perotti, & Norman, 1995; Todd & Bres-
san, 1990). In addition, in studies of object recognition, one
seminal study showed the importance of topological structure in
visual perception (Chen, 2005). This topology theory proposes that
the global nature of perceptual organization can be described in
terms of topological invariants, which include properties such as
connectedness, continuity, and boundary that are preserved under
continuous deformations, including stretching and bending. More
importantly, Chen (2005) systematically introduced Klein’s Erlan-
gen program1 into the study of visual perception. He found that the
relative perceptual salience of different geometric properties is
remarkably consistent with the hierarchy of geometries according
to Klein’s Erlangen program, which stratifies geometries in terms
of their relative stability over transformations (Chen, 2001, 2005;
Todd, Chen, & Norman, 1998).

There are three types of geometric invariance in Klein’s Erlan-
gen program, which differ in the degree of freedom in geometric
transformation. The most constrained one is affine transformation,
allowing translation, rotation, reflection, and stretch, as well as any
combination of these. It distorts angles, distances, and areas while
retaining the other properties (e.g., parallel lines remain parallel).
In this case, a square can be affinely transformed to any kind of
rectangle or even parallelogram but not to a trapezium. Projective
transformation allows a much larger class of transformations than
affine transformation does. It introduces further distortions (e.g.,
without parallelism) but preserves more basic properties such as
the collinearity of points (e.g., points remain points and lines
remain lines) and incidence (that is, whether a point lies on a line).
More importantly, under projective transformation, a convex poly-
gon can be projectively transformed to any other convex polygon
but cannot be transformed to a concave one and vice versa. The
preservation of concavity is guaranteed by a concept called the
cross-ratio2 (e.g., Anderson, 2006). Finally, as the most radical
transformation, topological transformation includes continuous
deformations such as stretching and bending, while other proper-
ties such as connectedness, continuity, and boundary are pre-
served. A typical type of topological invariant is the number of
bounded holes in the figure (transforming a 0 to an 8 violates
topological transformation). Therefore, geometric stability in-
creases from affine to projective to topological invariants, along
with a reduced number of constraints. While it is relatively easy to
break invariance defined by affine transformation, it requires
rather dramatic geometric changes to break topological invariance.

Current Study

Based on studies of subjective contours (e.g., Grossberg, 2014;
Grossberg & Mingolla, 1985; Kanizsa, 1974), we assume that
observers can connect multiple moving objects by imaginary lines.
These lines define a virtual polygon to which different types of
geometric transformations can apply. In the context of VWM, we
further assume that manipulating geometric properties should be
able to impact memory performance by mediating the stability of
the DSC.

To illustrate the scope of possible results by using this paradigm,
we indulged in a few extreme hypotheses herein as follows:

Extreme Hypothesis 1: VWM would encode each individual
motion direction in isolation, and none of the transformation
types would impact memory performance.

Extreme Hypothesis 2: Configuration could exist but in a very
fragile state that could be disrupted by even affine transfor-
mation, producing a significant drop in memory performance.

Extreme Hypothesis 3: The configuration would be highly
robust such that only a topology change (the most dramatic
change) could break it.

Based on the aforementioned studies, we expected that the
manipulation of geometric transformation could impact memory
performance and were interested in how it does so.

Breaking geometric invariances can impact VWM performance
in two qualitatively different ways. The first is the continuous
decay hypothesis, which asserts that all types of geometric invari-
ances engage in the maintenance of DSC. The stability of DSC
should drop monotonically by gradually breaking different levels
of geometric invariances from affine to topology. The other is the
abrupt collapse hypothesis, which asserts that DSC is only defined
on a given level of geometric transformation. Any variances below
this level can be tolerated without imposing any decrement in
memory performance, while any variance above this level cannot
impose any further decrement.

To address these alternative hypotheses, we manipulated DSCs
with different geometrical invariances in a series of experiments
given Klein’s Erlangen program. We focused on how memory
performance changed as a function of breaking different levels of
geometric invariances. In addition to overall performance, we were
also interested in whether all the vertices of the DSCs were treated
equally given a certain geometric transformation, as some vertices
may play more important roles in a transformation than others.

Experiments 1 and 2 investigated whether any of the aforemen-
tioned hypotheses could successfully explain memory perfor-
mance as a function of geometric transformations. Experiment 3
further explored the asymmetry of processing different moving
objects, which are identical except for their roles in a given
geometric transformation. Finally, Experiment 4 demonstrated that
all the previous effects could be strengthened by linking each
object to form a real polygon.

General Method

We modified the change-detection task from VWM studies
(Jiang et al., 2000; Luck & Vogel, 1997; Phillips, 1974) to explore
the storage of multiple objects’ motion directions. A memory
display was presented first, in which four dots moved in different
directions for 500 ms, followed by a 1,000-ms retaining display, in
which the four dots stopped moving and remained static. Then all
the dots started to move again from the location where they
stopped before for another 500 ms as the test display. In half of the

1 Klein’s Erlangen program was an influential research program pub-
lished in 1872 by Felix Klein. This manifesto classified and characterized
geometries on the basis of projective geometry and group theory. Projec-
tive geometry was emphasized as the unifying frame for all other geome-
tries considered by him. In particular, Euclidean geometry was more
restrictive than affine geometry, which in turn is more restrictive than
projective geometry.

2 The cross-ratio is a number associated with a list of four collinear
points, particularly points on a projective line. Given four sequential points
A, B, C, and D on a line, their cross-ratio is defined as (A, B; C, D) �
(AC � BD)/(BC � AD).
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trials, all the dots’ motion directions in the test display were
identical to those in the memory display. In the other half of the
trials, one randomly selected dot moved with a different motion
direction in the test display. The participant was asked to store the
motion directions in the memory display and to detect whether any
motion direction was changed in the test display.

The configuration was defined as the virtual polygon with the
four dots being its vertices. In all cases, the boundary of the virtual
polygon overlapped with the convex hull of the four dots. The
shape of the virtual polygon was gradually transformed to a new
one by the motion of each dot in the memory display. The type of
configuration change could be classified given what geometric
constraints were satisfied or violated during such a transformation.

We set four main geometric transformation conditions that
could occur during the memory display, starting from affine trans-
formation3 (see detailed videos on the website http://www.psych
.zju.edu.cn/english/redir.php?catalog_id�14613).

The geometric transformation of the polygon was achieved by
matrix multiplication in MATLAB 7.6 (The MathWorks, Natick,
Massachusetts). The coordinates of four initial vertices (x, y) were
changed to four new coordinates (x,= y=) by the corresponding
transformation matrix. Taking affine transformation as an exam-
ple, it includes translation transformation, scale transformation,
rotation transformation, and shear transformation.4

Affine Condition (Satisfying Affine Transformation)

The virtual polygon during the memory display could only be
changed by affine transformations, including translation, rotation,
scaling, and shearing, as well as any combination of these.

Nonaffine Condition (but Satisfying
Projective Transformation)

In order to generate the movement traces, we initially pro-
grammed a new invisible polygon that was affinely transformed
from the original virtual polygon. The line segment between each
dot’s original location and the vertex in the new polygon nearby
was set as the moving trajectory for this dot. Three dots moved
along their own trajectories (starting from their original locations)
while the fourth dot’s destination was changed to a new location
2.9° from the vertex in the new polygon (the changing direction
was randomly determined). Consequently, the convex hull of the
four dots after their movements could not be affinely transformed
from the original polygon.

Nonprojective Condition (but Satisfying
Topological Invariance)

The memory display started with a convex polygon. During the
motion, Dot A crossed a diagonal of the polygon and stopped,
which changed the convex polygon into a concave one. Dot A was
also labeled as the critical dot, while the others were labeled as
noncritical dots. The configurations before and after the memory
display were not projectively equivalent, although they had the
same topological property.

Nontopological Condition (and Not Satisfying Any
Type of Geometric Invariance)

The initial spatial configuration was a convex polygon. In the
memory display, Dot A crossed the diagonal of the polygon and an
opposite edge sequentially, changing the convex polygon into a
self-intersecting convex polygon. This dot and its adjacent Dot B
in the opposite edge were labeled as critical dots because these two
dots’ movements caused this configuration change. The other two
dots in the display were labeled as noncritical dots. All dots had
equal possibilities to change their directions. The self-intersecting
polygon violated all geometric invariances.

A schematic illustration of a single trial is depicted in Figure 2.
The stimuli were presented on a 17-in. monitor (34.4cm � 25.8cm,
100-Hz refresh rate) with a black (RGB 0, 0, 0) background. At the
beginning of each trial, a white fixation cross was presented for
500 ms. After that, four white dots (RGB 255, 255, 255; diameter
of 0.5°) were randomly displayed on the boundary of an invisible
circle (diameter of 5.2°) with the constraint that (a) the center-to-
center distance between any two dots is within the range of 2.6 to
4.5° and (b) the invisible envelope of the four dots could form a
convex polygon (quadrilateral). The orientation of each dot’s mo-
tion was randomly selected from a set of 12 directions: from 0 to
330° (relative to the positive direction of the horizontal axis) in 30°
steps. Each direction was different from the others.

Each trial started with a display of four static dots for 500 ms
(preview display). These dots then moved in straight lines with a
speed of 5.8°/s5 for 500 ms (memory display), followed by a
1,000-ms display in which the dots remained static at the last
positions of their previous motions (retaining display). Then, these
dots moved again for another 500 ms as a test display and re-
mained in the display until a response was initiated. In 50% of the
trials, the moving directions of all dots in the memory display were
the same as those in the test display. In the remaining 50% of trials,
the moving direction of one dot changed 45° either clockwise or
counterclockwise from that in the memory display.

3 In our paradigm, each object moved separately and independently,
preventing us from including Euclidean invariance, which requests iden-
tical motion directions among objects. Therefore, we started from affine
transformation.

4 �x� y� 1 � � �x y 1 � � R(�) � S(sx,sy) � Sh(shx,shy) � T(tx,ty);

T � �
1 0 0

0 1 0

tx ty 1
� ; tx/ty specifies the displacement along the x-axis/y-axis,

ranging from �1 to 1; S � �
Sx 0 0

0 Sy 0

0 0 1
� ; Sx/Sy specifies the scale factor

along the x-axis/y-axis, ranging from 1.2 to 1.6; Sh � �
1 Shy 0

Shx 1 0

0 0 1
� ;

Shx/Shy specifies the shear factor along the x-axis/y-axis, ranging

from �1.6 to 1.6; R � �
cos � sin � 0

�sin � cos � 0

0 0 1
� ; � specifies the angle of

rotation, ranging from 0 to �/3.
5 We used this relatively slow motion direction to reduce the perceptual

difficulty of the task so as to concentrate on VWM. A previous study has
shown a crowding effect of motion perception when the motion speed is
14°/s, but not when the speed is 7°/s (Alvarez & Franconeri, 2007).
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Participants responded by pressing one of two buttons (“F” and
“J” on the keyboard) in each trial to indicate whether any dot’s
moving direction had changed. They were instructed to respond as
accurately as possible without worrying about the response time.
Both response accuracy and reaction time (RT) were recorded.
Before the actual experiment, a practice session of at least 2 min
(20 trials) was completed to ensure that the participants understood
the instructions.

The sample size in the current study was determined by a power
analysis based on predicted effect size using G�Power 3 (Faul,
Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, &
Buchner, 2007). According to the effect size (�p

2 � .17) obtained
from the pilot experiment, the analysis suggested a sample size of
16. This sample size was adopted by all the following experiments.

Each participant provided written and informed consent before
the experiment, and the procedures were in compliance with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki), as well as approved by the Research Ethics Board of
Zhejiang University.

Experiment 1: Breaking Affine Transformation

We began by exploring whether breaking affine geometric
transformation can disrupt the memory of dynamic configuration.
Experiment 1 contained two different type-of-transformation con-
ditions for the movement in the memory display: the affine trans-
formation condition (affine) and the nonaffine transformation con-
dition (nonaffine).

Method

Sixteen undergraduates (seven females, 18–26 years of age)
from Zhejiang University participated in this experiment. All had
normal color vision and normal or corrected-to-normal visual
acuity.

In the affine condition, the configuration of the four dots
changed smoothly during the memory display with the constraints
that (a) the virtual polygon was convex during the entire memory
display and (b) the virtual polygons at any time point were affinely
equivalent. In the nonaffine condition, the virtual polygons were
all convex, but two virtual polygons before and after the movement
during the memory display were not affinely equivalent.

Each participant performed 120 trials per condition, resulting in
a total of 240 trials presented in a randomized order. The experi-
ment was divided into four blocks with 2-min breaks between
them.

Results and Discussion

The results of Experiment 1 are shown in Figure 3. No signif-
icant difference in accuracy was found between the affine condi-
tion (80.38% 	 7.27%) and the nonaffine condition, 81.19% 	
6.78%; t(15) � �0.76, p 
 .05.

We also calculated the d= value for each condition. The differ-
ence in sensitivity between affine (2.00 	 0.66) and nonaffine
(1.96 	 0.63) was not significant, t(15) � 0.36, p 
 .05.

These results suggested that merely breaking affine invariance
had no significant impact on the encoding dynamic configuration
in working memory, which did not support the continuous decay

hypothesis. We will further explore the abrupt collapse hypothesis
in Experiment 2.

Experiment 2: Breaking Projective and
Topological Invariances

By continuously following the hierarchy of Klein’s Erlanger
program, we further broke either projective or topological geomet-
ric transformation in different conditions such that they could be
compared directly. In addition to analyzing the overall perfor-
mance, we also explored the effects of global geometric transfor-
mation on the memory of individual items. When transforming a
convex polygon into a concave or a self-crossing one (see the
Method section below), the role of each item is not equally
important. The critical dots were defined as the ones whose mo-
tions caused a violation of certain geometric invariances.

Method

A new group of 16 undergraduates (six females, 18–24 years of
age) from Zhejiang University participated in this experiment. All
had normal color vision and normal or corrected-to-normal visual
acuity.

The displays can be divided into three conditions. The nonaffine
condition was identical to the nonaffine condition in Experiment 1,
in which affine transformation was violated, but projective and
topological invariances were satisfied. The critical dot was not
defined in this condition. In the nonprojective condition, the con-
figuration of the four dots changed smoothly from a convex to a
concave polygon. Two polygons before and after the memory
display were not projectively equivalent. In this case, projective
invariance was violated while topological invariance was satisfied,
and the critical dot was the one that fell inside the convex hull
instead of on the boundaries. In the nontopological condition, the
configuration changed from a convex to a self-intersecting convex
polygon, in which one of the dots crosses its opposite edge. In this
case, topological invariance was not satisfied, and all the geomet-
ric invariances in the hierarchy were violated. Two dots that
moved toward each other and finally made two opposite sides
intersect were determined to be critical dots (see Figure 1). These
transformations were covered in the Introduction.

Each participant performed 120 trials per condition, resulting in
a total of 360 trials in which all trials were presented in a random-
ized order. The experiment was divided into six blocks with 2-min
breaks between them.

Results and Discussion

The averaged accuracy and d= are depicted in Figures 4A and
4B. The most important result is the abrupt drop of performance
when breaking the projective invariance. Confirming this obser-
vation, a one-way repeated-measures analysis of variance
(ANOVA) revealed a significant main effect of the type of trans-
formation, F(2, 30) � 36.71, p � .01, �p

2 � 0.71. Bonferroni-
corrected post hoc contrasts confirmed that the accuracy of the
nonaffine condition (79.19% 	 6.48%) was higher than those of
the nonprojective (70.25% 	 8.18%, p � .01) and nontopological
(69.63% 	 5.89%, p � .01) conditions. Interestingly, there was no
difference between the nonprojective and nontopological condi-
tions (p 
 .05).
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Analysis of the d= revealed the same pattern of results. A
significant main effect was found for sensitivity, F(2, 30) � 43.88,
p � .01, �p

2 � 0.75. The sensitivity was significantly higher in the
nonaffine condition (1.88 	 0.57) than in the nonprojective con-
dition (1.22 	 0.52, p � .01) or the nontopological condition (1.08
	 0.36, p � .01), while no difference was found between the latter
two conditions (p 
 .05). These results indicated that memory was
more accurate in the nonaffine condition than in the nonprojective
and nontopological conditions.

The averaged hit rates of detecting the change of critical and
noncritical dots in the test display are depicted in Figure 4C. Paired
t tests revealed a significantly higher hit rate for critical dots
(76.25% 	 14.11%) than for noncritical dots, 51.38% 	 17.63%;
t(15) � 4.97, p � .01, in the nonprojective condition. The same
pattern was found in the nontopological condition—critical dots:

70.00% 	 10.79%; noncritical dots: 54.88% 	 12.13%; t(15) �
5.97, p � .01.

Taken together, this experiment provided clear evidence that
projective invariance is the most critical geometric property in
representing a dynamic configuration in VWM. This could be
demonstrated by three discoveries: (a) breaking projective invari-
ance can cause a significant drop in memory performance, (b)
breaking a more constrained invariance (i.e., the affine transfor-
mation) will not impact the memory performance, and (c) further
breaking a more liberal invariance (i.e., the topological invariance)
will not further impair the performance. These results were in line
with the abrupt collapse hypothesis but were against the continu-
ous decay hypothesis.

The higher hit rate for the critical dots has two implications. It
first suggests that the inferior performance of the nonprojective
and nontopological conditions cannot be explained by low-level
factors such as the “density” or “crowdedness” of the display. An
additional analysis of the motion trajectory for the nontopological
condition showed that critical dots were the most crowded objects
in the display, as their average distance to other items (4.85° 	
0.58°) was actually significantly shorter than that of the noncritical
dots, 5.78° 	 1.08°; t(14) � �3.03, p � .01. A “crowding” effect
(e.g., Alvarez & Franconeri, 2007; Ma, McCloskey, & Flombaum,
2014) predicts lower performance for detecting changes of these
dots, which is opposite to our results. Second, it also cannot be
explained by a “proximity” effect. Additional analyses for the
nonaffine condition showed that there is no correlation between
the hit rates and the averaged distance between the test item and
the other items, r � .08, p 
 .05. These results collectively suggest
that the higher hit rate for the critical dots can be attributed to their
special roles in violating projective and topological transforma-
tions.

Experiment 3: Geometry Transformation,
Not Visual Acuity

Here, we further explored whether the superior performance in
detecting a direction change in the critical dot(s) was due to some
other low-level sensory factor, such as visual acuity, instead of
high-level processing of geometric invariances. As the critical dot
should move toward the geometric center of the virtual polygon,
and since the memory display was also presented around the
observer’s fixation, the critical dot was moved closer to the fixa-
tion point, which could have led to a higher hit rate due to better
visual acuity.

Figure 2. A timeline of one trial. The dashed rectangle denotes the item whose moving direction was changed
and did not appear during the experiment.

Figure 1. Four invariance conditions. Affine invariance condition (affine;
baseline) (A). Different levels of form stability in ascending order from B
to D; they differ in affine geometry, projective geometry, and topological
geometry, respectively (B, C, and D). These constitute a hierarchy of
geometries according to Klein’s Erlangen program. All colored dots rep-
resent critical dots in Experiments 2 and 3. The thin dashed lines in C and
D indicate the diagonal lines, and both the large dotted lines and thin
dashed lines did not appear during the experiment. See the online article for
the color version of this figure.
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We tested this alternative hypothesis by shifting the fixation
point away from the center of the memory display by (a) moving
all the dots out of the center of the visual field and (b) ensuring that
the critical dot was not closer to the fixation point than the others.

Method

A new group of 16 undergraduates (seven females, 19–25 years
of age) from Zhejiang University participated in this experiment.

The ability of attention manipulation and visual information
processing would decline along with the target’s away from the
center of the visual field (Findlay, 1982; Pollatsek, Lesch, Morris,
& Rayner, 1992; Posner, 1980; Rayner, McConkie, & Zola, 1980;
Rayner & Morris, 1992). We manipulated the position of the
fixation cross to 4.4° either left or right from the center of the
screen, aligned with the horizontal meridian (see Figure 5). Par-
ticipants were required to look at the fixation during the whole
trial. The four dots were located randomly on the boundary of an
invisible circle with this fixation as its center.

The other aspects of Experiment 3 were identical to those of
Experiment 2.

Results and Discussion

The results here were a replication of those in Experiment 2 (see
Figure 6). A one-way repeated-measures ANOVA showed that the
main effect of the type of transformation was significant, F(2,
30) � 39.88, p � .01, �p

2 � 0.73. Post hoc contrasts revealed that

participants’ performance in the nonaffine condition (80.23% 	
6.16%) was significantly better than that in the nonprojective
condition (71.18% 	 6.28%, p � .01) or the nontopological
condition (70.14% 	 5.51%, p � .01), while no difference was
found between the latter two conditions (p 
 .05).

We also considered sensitivity (d= value). One-way ANOVA
showed a main effect of type of transformation, F(2, 30) � 33.59,
p � .01, �p

2 � 0.69. It was significantly higher in the nonaffine
condition (1.97 	 0.61) than in the nonprojective condition
(1.23 	 0.41, p � .001) and the nontopological condition (1.12 	
0.34, p � .001).

We further adopted a paired t test to compare the distance
between the critical dots and the fixation to that between the
noncritical dots and the fixation, and no significant difference
was found in either the nonprojective condition— critical dots:
4.16° 	 0.83°; noncritical dots: 5.17° 	 1.75°; t(14) � �2.00,
p 
 .05— or the nontopological condition— critical dots:
5.02° 	 1.21°; noncritical dots: 5.76° 	 1.60°; t(14) � �1.30,
p 
 .05.

Paired t tests revealed a significantly higher hit rate for critical
dots (74.17% 	 14.38%) than for noncritical dots, 56.25% 	
10.88%; t(15) � 4.02, p � .01, in the nonprojective condition. The
same pattern was found in the nontopological condition—critical
dots: 72.92% 	 7.97%; noncritical dots: 60.21% 	 11.83%;
t(15) � 3.43, p � .01.

Taken together, these results could not provide supportive evi-
dence that the varied performances of the critical and noncritical

Figure 3. Results of Experiment 1. The accuracies of affine and nonaffine conditions (A). d=s of affine and
nonaffine conditions (B).

Figure 4. Results of Experiment 2. Response accuracies of nonaffine, nonprojective, and nontopological
conditions (A). d=s of nonaffine, nonprojective, and nontopological conditions (B). Hit rates of critical and
noncritical dots in the nonprojective and nontopological conditions, respectively (C).
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dots were attributed to their different distances to the fixation.
These varied performances were based on their separate roles
during the dynamic configuration transformation.

These results showed that the unique effects from breaking
projective transformation could be replicated by manipulating the
relative position of the memory display and the observer’s fixation.
Most importantly, these results verified that the superior perfor-
mance of detecting the critical dots was due to their role in the
global geometric transformation.

Experiment 4: Virtual Polygon Versus Real Polygon

Here, we further explored the scope of our findings by directly
comparing the effects of geometric transformation on virtual and
real polygons. On one hand, our interpretations of the discoveries
so far were based entirely on the virtual polygon formed by the
four individual moving dots. These explanations predicted that
these effects would still exist with a real polygon by connecting
adjacent dots with auxiliary lines. In fact, these effects should be
even stronger since the lines can further strengthen the global
representation. On the other hand, there was no consensus among
early work on the roles of different geometric invariances in real
shape constancy (Niall & Macnamara, 1989, 1990; Pizlo, 1994;
Todd et al., 1998). It is thus worth exploring how geometric
transformations impact the representation of a smoothly changing
shape.

Method

A new group of 16 participants (11 females, 19–28 years of age)
from Zhejiang University were enrolled.

A 2 (polygon type: virtual vs. real) � 3 (type of transformation:
nonaffine, nonprojective, or nontopological) within-subject design
was adopted. In the real shape condition, the envelope lines of four
dots were displayed as solid lines (RGB 255, 255, 255, width of
0.2°) during each trial.

Participants were required to complete all six conditions. Two
different polygon types were blocked, while different transforma-
tions were randomized within each block. The orders of these
blocks were counterbalanced across participants. Within each block,
each participant performed 80 trials per type-of-transformation con-
dition, resulting in 240 trials for each block and 480 trials for the entire
experiment. Each block was further divided into four sections, with a
2-min break between each two of them. The other aspects of
Experiment 4 were identical to those of Experiment 2.

Results and Discussion

Figures 7A and 7B depict the accuracy and d= as a function of
polygon type and type of transformation. The most important
result was that, in each type of geometric manipulation, the effect
on the real polygon was the same as that on the virtual polygon.
Two-way ANOVA for accuracy revealed a significant main effect
of type of transformation, F(2, 30) � 82.46, p � .001, �p

2 � 0.85,
and polygon type, F(1, 30) � 5.35, p � .05, �p

2 � 0.26, as well as
a significant interaction between polygon type and type of trans-
formation, F(2, 30) � 5.35, p � .05, �p

2 � 0.26.
We then conducted two one-way repeated-measures ANOVAs

for virtual and real conditions, respectively. In the virtual polygon
condition, the main effect of type of transformation was signifi-
cant, F(2, 30) � 37.37, p � .01, �p

2 � 0.71. Post hoc contrasts
revealed that participants’ performance in the nonaffine condition
(78.13% 	 5.53%) was significantly better than that in the non-
projective condition (68.98% 	 5.46%; p � .01) or the nontopo-
logical condition (69.22% 	 6.42%; p � .01), while no difference
was found between the latter two conditions (p 
 .05). For the
performance in the real polygon condition, the main effect of type
of transformation was significant, F(2, 30) � 54.37, p � .01, �p

2 �
0.78. Post hoc contrasts revealed that participants’ performance in
the nonaffine condition (78.91% 	 6.27%) was significantly better
than that in the nonprojective condition (64.22% 	 3.65%; p �

Figure 5. An example after the manipulation of fixation in Experiment 3.
The dashed circle indicates the location of four dots before moving that did
not appear during the experiment.

Figure 6. Results of Experiment 3. Response accuracies in the nonaffine, nonprojective, and nontopological
conditions (A). d=s in the nonaffine, nonprojective, and nontopological conditions (B). Hit rates for critical and
noncritical dots in the nonprojective and nontopological conditions, respectively (C).
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.01) or the nontopological condition (64.92% 	 5.05%; p � .01),
while no difference was found between the latter two conditions
(p 
 .05).

Concerning the comparison between the real and virtual poly-
gon conditions, paired t tests for both the nonprojective and non-
topological conditions revealed worse memory accuracies in the
real condition than those in the virtual condition—nonprojec-
tive: t(15) � 3.22, p � .01; nontopological: t(15) � 2.20, p �
.05. However, in the nonaffine condition, no significant differ-
ence was found between the real and virtual polygons,
t(15) � �0.58, p 
 .05.

In order to exclude any carryover effect in Experiment 4, the
participants were divided into two subgroups according to their
polygon type order; that is, one group first did the virtual polygon
block, while the other group first did the real polygon block. We
conducted 2 (block order: virtual first vs. real first) � 3 (type of
transformation: nonaffine, nonprojective, or nontopological)
mixed-design ANOVAs for both the accuracy and d=. ANOVA for
accuracy revealed a significant main effect of type of transforma-
tion, F(2, 28) � 36.33, p � .001, �p

2 � 0.72; however, there was
no interaction between the order and the type of transformation,
F(2, 28) � 0.43, p 
 .05, �p

2 � 0.03. Analyzing sensitivity (d=
value) showed exactly the same pattern of results, which are not
included here because of space limitations.

The results demonstrated that representations of virtual poly-
gons and real polygons are governed by the same set of geometric
rules, in which projective invariance plays a particularly important
role. Memory performance was improved when projective invari-
ance was kept during movement. On the contrary, the performance
was impaired when projective invariance was violated.

General Discussion

In the current study, we explored the geometric rules governing
the representation of dynamic configurations in VWM. We dis-
rupted different types of geometric invariances one at a time and
observed how that particular geometric rule influenced the perfor-
mance of a change-detection task. This approach yielded a rich set
of results: (a) Memory performance dropped abruptly when the
projective invariance of the memory display was disrupted, (b)
breaking other types of invariance had no effect (e.g., affine) or

had no additive effect (e.g., topology), (c) memory was biased
toward processing the object(s) responsible for breaking projective
invariance, and (d) all of the above effects also occurred when the
virtual polygon was turned into a real polygon by connecting each
individual object with solid lines.

These results collectively demonstrated how the representation
of a configuration is maintained and collapsed in a dynamic scene
with a smooth transformation. The implications of these results are
discussed in detail below.

Configuration as a Hierarchical Representation

Configuration is an important component of human vision. It
should be noted that in psychophysical studies on VWM, config-
uration is typically objectively manipulated but not explicitly
defined (Jiang et al., 2000; Zimmer & Lehnert, 2006). Here, we
start our discussion by explicitly defining what we mean (and do
not mean) by configuration by connecting human psychophysics
with information and probability theories.

Configuration can be defined as a Markov random field (see
Brady & Tenenbaum, 2013; Kindermann & Snell, 1980, for an
excellent example of using this model to explore working mem-
ory). This type of configuration has the following assumptions: (a)
An item’s features should correlate with those of its neighbors and
(b) being conditional on its neighbors, an item is independent of
other items in the scene (i.e., the Markov assumption). Figure 8A
illustrates one possible Markov random field model of the memory
displays in the current study. In this particular model, Item A’s
motion is independent of Item D given B and C, as the paths from
A to D are all blocked by observing B and C. We should empha-

Figure 7. Results of Experiment 4. Response accuracies in the nonaffine, nonprojective, and nontopological
conditions (A). d=s in the nonaffine, nonprojective, and nontopological conditions (B).

Figure 8. Three possible configurations. See details in General Discus-
sion.
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size here that this type of configuration does not fit our geometric
manipulation of the memory display for the reasons discussed
below.

The second type of configuration is defined as a hierarchical
structure (see Figure 8B), in which each item is the component of
a “super” item defined at a higher level in the hierarchy. Given this
definition, each item’s motion is the outcome of the smooth
transformation of the higher level unit, which is a polygon in our
study. For comparison, while the Markov random field is defined
as an undirected, noncausal correlation in a (flat) field, this type of
configuration, to which our present geometric invariance manipu-
lation belongs, is defined as directed and causal interactions in a
hierarchy. These two types of configurations are not mutually
exclusive but can be combined to represent complicated real
scenes (Figure 8C). However, this is outside the scope of our
psychophysical manipulations, so we shall not expand on this
point.

One intriguing aspect of the hierarchical structure is that the
concept of object does not have a special status in it. A unit or a
node in the hierarchy can be as global as the entire scene or as
specific as a component of a part of an object (e.g., the texture of
a leg of a table). This idea has long been discussed in psychology.
For instance, according to Palmer (1977), no fundamental differ-
ence should exist between parts and a whole object. An object is
composed of parts, while the parts themselves are possibly com-
posed of parts, and each of these levels is referred to as a structural
unit. This argument has been supported by studies showing that a
similar mechanism underlying object-based attention (Egly,
Driver, & Rafal, 1994) also operates at the level of parts (Vecera,
Behrmann, & Filapek, 2001) and at the level of the group (Driver
& Baylis, 1998). We argue that the distinction between an object
and a structured unit is not rhetorical but has significant theoretical
implications. An object emphasizes an entity that can be seg-
mented from a background, while a unit or a node emphasizes an
entity that exists only in a hierarchical structure, which is the focus
of the current study. Highlighting this distinction is especially
important for future research on VWM. In contrast to the extensive
VWM studies on the storage of individual objects, only a few
studies have explored the storage of multiple objects’ relationships
(e.g., Clevenger & Hummel, 2014; Hummel & Biederman, 1992).
How VWM can be allocated to a hierarchical structure is largely
unknown.

Why Projective Invariance?

Our results indicate that projective invariance plays a critical
role in defining dynamic configurations in VWM. Since the con-
figuration is defined by the smooth transformation of a virtual
polygon, these results shed light on how vision persistently repre-
sents 3D rigid shapes with various deformations. Interestingly,
studying deformable shapes is also a major research topic in the
computer vision community (e.g., Siddiqi & Pizer, 2008). The
challenge of representing a shape persistently is that the same 3D
object’s projection onto 2D images can change dramatically due to
the motion of the object or the observer. As we have elaborated in
the Introduction, the central task of vision is to recognize 3D
scenes from their projections onto 2D images. Such a process is
governed by projective geometry. Therefore, it is desirable to
represent the 2D shape in a way that is invariant to changes caused

by the projections, including size, scaling, rotation, and stretching.
Shape representation that fails to capture such invariances will
make vision incapable of representing the same shape persistently
across viewing conditions. On the contrary, tolerating dramatic
changes beyond projective transformation (such as concavity and
connectivity) will impose risks of representing different shapes as
the same one. From this perspective, the current result does reflect
a shape representation that is optimal in the context of “inverse
projection.” In the meantime, we also want to point out that the
above interpretation is an ad hoc explanation. As we have argued
in the Introduction, there is no strong theoretical account that can
precisely predict how global geometric transformation can impact
VWM. Future studies are required to examine the validity of such
an interpretation.

We also want to point out that the shape invariance explored in
our work is mostly like the primitives for more sophisticated
configurational representation. For instance, in models of the an-
imal body, skeletons of the animal can be represented by compos-
ing primitive shapes with joints. The composition of primitive
shapes is governed by a set of “visual grammar” (e.g., Zhu &
Yuille, 1996). The deformation of these composed shapes can
certainly violate projective transformation, which only limits the
motion of each primitive.6

From Randomized Displays to Structured
Informative Scenes

In the current study, the memory display is not randomly gen-
erated by simply combining the motion of each object. Instead, the
entire display is generated given certain geometric rules at the
scene level. This methodological choice has theoretical implica-
tions. We argue that it is necessary to scale up the investigation of
VWM from the storage of individual objects to the entire visual
scene with a deep hierarchical structure. To establish a connection
between VWM and scene understanding in general, we refer to the
memory display in the change-detection task as a single scene. In
most of the previous studies on VWM (including those on static
and dynamic configurations), the scene is randomly generated with
little cross-object correlation (e.g., the color of each item is inde-
pendently sampled from a set of distinctive colors). If we assume
that there is a scene distribution (defined explicitly or implicitly)
and that a scene used in a single change-detection trial is a sample
from that distribution, then the scene distribution is a uniform
distribution in most of the previous studies. In other words, every
combination of features from a different object has the same
probability of appearing in the scene. It is well known that a
uniform distribution has the maximized randomness or entropy
(without other constraints on the distribution; e.g., Park & Bera,
2009). Such a randomized distribution is quite useful for experi-
mental design, as it allows researchers to eliminate any potential
systematic effect that is not manipulated or controlled in an ex-
periment.

Nevertheless, the adoption of maximally randomized scenes
also creates two challenges for understanding the nature of VWM.
First, it makes the connection between VWM and real scene
understanding (e.g., Li, VanRullen, Koch, & Perona, 2002; Oliva

6 We thank an anonymous reviewer for raising the question of articu-
lated motions.
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& Torralba, 2001) rather unclear. It has been demonstrated that the
distributions of visual features in real scenes are far from uniform
or Gaussian but contain complicated structures (e.g., Mumford &
Desolneux, 2010). These structures include either short-range cor-
relations that can be captured by a Markov random field (Figure
8A) or long-range correlations demanding a hierarchical top-down
representation (such as the virtual polygon employed in our work;
see Figure 8B). Since any structure beyond an individual object is
eliminated by the randomized design, given our knowledge of
VWM so far, it remains largely unknown how VWM engages in
real scene perception. Second, with randomized scenes, informa-
tion theory becomes largely useless. It is interesting to note that
while the phrase visual information is used pervasively in studies
of human vision, few of them actually make a connection to
information theory. One notable exception is the studies on human
eye movements, which argued that eye movements maximize
information gain (e.g., Bruce & Tsotsos, 2009; Najemnik & Gei-
sler, 2005). Specific to studies of VWM, the usage of maximally
randomized scenes may be an important reason for the lack of such
a connection. Information theory, at its most fundamental level,
relies on the structure of the signal’s distribution. Perhaps the most
basic application of information theory is to assign shorter codes to
signals with higher probabilities. With scenes sampled from a
uniform distribution, even this basic principle is not helpful, as
every scene has exactly the same low probability. Therefore, no
efficient coding scheme exists. This is not surprising, as by using
randomized scenes, one essentially excludes any information at the
scene level. One cannot apply information theory where informa-
tion does not exist.

The importance of combining structured scenes and information
theory has been well demonstrated in the computer vision com-
munity. In fact, the central goal of many modern computer vision
algorithms is to model real scene distributions by using principles
derived from information theory, such as maximum entropy, max-
imum information gain, and minimum encoding length (Yuille,
Ruiz, Pérez, & Bonev, 2009). By integrating these principles
creatively, one can model real scene distributions as tightly as
possible by using as few features as possible, so that the model is
both parsimonious and generalizable (for an excellent example, see
Zhu, Wu, & Mumford, 1997). Nevertheless, it is difficult to bridge
the gap between human vision and computer vision, since these
types of models do not apply to scenes that are highly randomized.

In our study, we move one step forward to address this challenge
by using a display that is not randomly generated by using highly
structured distributions defined by several types of geometric
transformations. The psychophysical results confirm the impor-
tance of the structure beyond individual objects. However, these
distributions are still manipulated and created by the experimenters
rather than estimated from a set of real sense. In the future, it
would be important to explore how VWM encodes structural
displays sampled from real scene distributions. In the meantime,
there are also recent studies on ensemble perception and scene
statistics (e.g., Albrecht & Scholl, 2010; Alvarez, 2011; Ariely,
2001; Chong & Treisman, 2003, 2005; Marchant, Simons, & de
Fockert, 2013), which we hope can also help the studies on
working memory move toward more informative scenes with
intriguing probability distributions.

Conclusion

Our study explored the representation of dynamic configura-
tions by synthesizing two perspectives of visual perception. One
perspective is that the construction and maintenance of visual
representation are partially determined by certain geometric rules,
such as those in Klein’s Erlangen program. The other perspective
is that VWM should be sensitive to scene structure beyond indi-
vidual objects. Based on these two perspectives, we conducted a
series of psychophysical experiments and demonstrated how pro-
jective invariance of the global configuration is critical in main-
taining a dynamic configuration in VWM.
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